List of Publications Since 2000+n

1A 2A 3B 4B 5B 6B 7B 8B 8B 8B 1B 2B 3A 4A 5A 6A 7A 8A
H
01
 He
02
Li
03
Be
04
B
05
C
06
N
07
O
08
F
09
Ne
10
Na
11
Mg
12
Al
13
Si
14
P
15
S
16
Cl
17
Ar
18
K
19
Ca
20
Sc
21
Ti
22
V
23
Cr
24
Mn
25
Fe
26
Co
27
Ni
28
Cu
29
Zn
30
Ga
31
Ge
32
As
33
Se
34
Br
35
Kr
36
Rb
37
Sr
38
Y
39
Zr
40
Nb
41
Mo
42
Tc
43
Ru
44
Rh
45
Pd
46
Ag
47
Cd
48
In
49
Sn
50
Sb
51
Te
52
I
53
Xe
54
Cs
55
Ba
56
Ln
57-71
Hf
72
Ta
73
W
74
Re
75
Os
76
Ir
77
Pt
78
Au
79
Hg
80
Tl
81
Pb
82
Bi
83
Po
84
At
85
Rn
86
 La
57
Ce
58
Pr
59
Nd
60
Pm
61
Sm
62
Eu
63
Gd
64
Tb
65
Dy
66
Ho
67
Er
68
Tm
69
Yb
70
Lu
71

Last revision: 2023.09.09

 

2023  [top]

[141] H. Yang, W. Zou, K. K. Ostrikov, C. Zhang, A. Du, Tuning Electrocatalytic Nitrogen Reduction on Supported Nickel Cluster via Substrate Phase Engineering, App. Surf. Sci. 640, 158277 (2023).

[140] W. Yan and W. Zou [*], Low-lying electronic states of osmium monoxide (OsO), Chin. Phys. B XXX (2023). DOI 10.1088/1674-1056/acec46

[139] Y. Liu, L. Wang, Y. Lei, B. Suo, Y. Zhang, W. Zou [*], Theoretical study of low-lying electronic states of OsO+, Chem. Phys. Lett. 829, 140692 (2023).

[138] L. Wang and W. Zou [*], Theoretical study of low-lying electronic states of rhenium monoxide (ReO), J. Quant. Spectrosc. Radiat. Transf. 310, 108750 (2023).

[137] C. Gao, G. Guo, S. Hu, H. Liu, W. Zou, P. Zhang, J. Yan, Structures and stabilities of UPbn (n ≤ 18) clusters: A first-principles global optimization calculation, Materials Today Communications, 36, 106585 (2023).

[136] W. Zou, M. Freindorf, V. Oliveira, Y. Tao, and E. Kraka, Weak and strong π interactions between two monomers - assessed with local vibrational mode theory, Can. J. Chem. 101, 615-632 (2023).

[135] L. Zhao and W. Zou [*], A general method for locating stationary points on the mixed-spin surface of spin-forbidden reaction with multiple spin states, J. Chem. Phys. 158, 224110 (2023).

[134] S.-X. Hu, P. Zhang, L.-Z. Cao, W.-L. Zou, and P. Zhang, XPu(CO)n (X = B, Al, Ga; n = 2 to 4): π Back-Bonding in Heterodinuclear Plutonium Boron Group Compounds with an End-On Carbonyl Ligand, J. Phys. Chem. A 127, 1233-1243 (2023).

[133] Y. Niu and W. Zou [*], Theoretical study of low-lying electronic states of WO, J. Quant. Spectrosc. Radiat. Transf. 298, 108496 (2023).

[132] J. Ma, H. Liu, S.-Y. Zhang, H.-L. He, W.-L. Zou, Y.-X. Fan, and Z.-Y. Tao, Antisymmetric localization of terahertz defect modes in a planar waveguide with undulated walls, Phys. Scr. 98, 015515 (2023).

2022  [top]


[131] S. Hu, X. You, W. Zou, E. Lu, X. Gao, and P. Zhang, Electronic Structures and Unusual Chemical Bonding in Actinyl Peroxide Dimers [An2O6]2+ and [(An2O6)(12-crown-4 ether)2]2+ (An = U, Np, and Pu), Inorg. Chem. 61(39), 15589-15599 (2022).

[130] Y. Fu, Y. Niu, X. Liang, H. Liu [*], and W. Zou [*], High-Level Theoretical Study of the C1Π States of GaCl, GaBr, InCl, and InBr, J. Phys. Chem. A 126(33), 5565-5573 (2022).

[129] D. Du, H. Zhu [*], Y. Guo, X. Hong, Q. Zhang, B. Suo, W. Zou, and Y. Li [*], Anchoring Cu Clusters over Defective Graphene for Electrocatalytic Reduction of CO2, J. Phys. Chem. C 126(28), 11611–11618 (2022).

[128] J. Ma, H. Liu, S. Zhang, W. Zou, Y. Fan, and Z. Tao, Terahertz Resonances of Transverse Standing Waves in a Corrugated Plate Waveguide, IEEE Photonics J. 14, 5929508 (2022).

[127] G. Wu, B. Suo, and W. Zou, Theoretical studies on the photophysical property of 3DPyM-pDTC in solution and in the solid phase, Chem. Phys. Lett. 801, 139727 (2022).

[126] Y. Yu, L. Zhang, Y. Niu, W. Zou, R. Cheng, and J. Yang, Electronic Structure of RuO, J. Quant. Spectrosc. Rad. Tran. 288, 108247 (2022).

[125]Y. Tao, W. Zou, S. Nanayakkara, and E. Kraka, LModeA-nano: A PyMOL Plugin for Calculating Bond Strength in Solids, Surfaces, and Molecules via Local Vibrational Mode Analysis, J. Chem. Theor. Comput. 18, 1821-1837 (2022).

[124] Y. Tao, X. Wang, W. Zou, G.-G. Luo, and E. Kraka, Unusual Intramolecular Motion of ReH92- in K2ReH9 Crystal: Circle Dance and Three-Arm Turnstile Mechanisms Revealed by Computational Studies, Inorg. Chem. 61, 1041-1050 (2022).

[123] D. Deng, B. Suo [*], and W. Zou [*], New Light on an Old Story: Breaking Kasha’s Rule in Phosphorescence Mechanism of Organic Boron Compounds and Molecule Design, Int. J. Mol. Sci. 23, 876 (2022).

[122] S. Hu and W. Zou [*], Stable copernicium hexafluoride (CnF6) with an oxidation state of +VI, Phys. Chem. Chem. Phys. 24, 321-325 (2022).

2021  [top]


[121] Y. Guo, H. Zhu, H. Zhao, Q. Zhao, C. Zhou, B. Suo, W. Zou, Z. Jiang, and Y. Li, A theoretical study of the electrochemical reduction of CO2 on cerium dioxide supported palladium single atoms and nanoparticles, Phys. Chem. Chem. Phys. 23, 26185-26194 (2021).

[120] Y. Xia, J. Hou, L. Ji, W. Zou, G. Wang, Two-state reaction guaranteed high efficiency hydrogen production in Sn+H2O reaction: A preliminarily theoretical study based on single molecule model, Int. J. Hydrogen Energ. 46, 39003-39010 (2021).

[119] P. Zhang, W. Zou, P. Zhang, and S.-X. Hu, Electronic Structures and Properties of Actinide-Bimetal Compounds An2O2 (An=Th to Cf) and U2E2 (E=N, F, S), Eur. J. Inorg. Chem. 2021, 3926-3937 (2021).

[118] L. Zhang, W. Zou, Y. Yu, D. Zhao, X. Ma, Jie Yang, Spin-orbit splittings in the low-lying states of MoO molecule, J. Quant. Spectrosc. Radiat. Transf. 269, 107690 (2021).

[117] Y. Feng, H. Zhu, Q. Zhang, Q. Zhao, H. Zhao, B. Suo, G. Zhai, W. Zou, H. Han, Q. Song, J. Li, Y. Li, Theoretical study on the two novel planar-type all-nitrogen N44- anions: Structures, stability, reaction rate and their stable mechanisms via protonation, Chem. Phys. Lett. 771, 138519 (2021).

[116] Y. Tao, W. Zou, S. Nanayakkara, M. Freindorf, E. Kraka, A revised formulation of the generalized subsystem vibrational analysis (GSVA), Theor. Chem. Acc. 140, 31 (2021).

[115] Y. Tao, W. Zou, G.-G. Luo, and E. Kraka, Describing Polytopal Rearrangement Processes of Octacoordinate Structures. I. Renewed Insights into Fluxionality of the Rhenium Polyhydride Complex ReH5(PPh3)2(Pyridine), Inorg. Chem. 60(4), 2492-2502 (2021).

[114] Z. Wang, B. Suo[*], S. Yin, and W. Zou[*], Quantum Chemical Simulation of the Qy Absorption Spectrum of Zn Chlorin Aggregates for Artificial Photosynthesis, Molecules 26, 1086 (2021).

 

2020  [top]


[113] H. Zhao, H. Zhu, Y. Feng, Q. Zhao, B. Suo, W. Zou, H. Han, G. Zhai, Z. Jiang, Q. Song, Y. Li, Highly Selective Electrocatalytic CO2 Reduction to Methanol on Iridium Dioxide with CO* Spectators, ChemElectroChem, 7(24), 5036-5043 (2020).

[112] W.-J. Zhang, G.-J. Wang, P. Zhang, W. Zou, and S.-X. Hu, The decisive role of 4f-covalency in structural direction and oxidation state of XPrO compounds (X: groups 13 to 17 elements), Phys. Chem. Chem. Phys. 22, 27746-27756 (2020).

[111] H. Zhu, C. Gao, M. Filatov[*], and W. Zou[*], Mössbauer isomer shifts and effective contact densities obtained by the exact two-component (X2C) relativistic method and its local variants, Phys. Chem. Chem. Phys. 22, 26776-26786 (2020).

[110] M. Z. Makos, W. Zou, M. Freindorf, and E. Kraka, Metal-Ring Interactions in Actinide Sandwich Compounds: A Combined Normalized Elimination of the Small Component and Local Vibrational Mode Study, Mol. Phys. 118, e1768314 (2020).

[109] J. Zhang, W. Zou, L. Zhang, D. Zhao, X. Ma, and J. Yang, The electronic structure of WS molecule below 21500 cm-1, Journal of Quantitative Spectroscopy and Radiative Transfer, 256, 107314 (2020).

[108] P. Zhang, H. Liu, W. Zou, P. Zhang, and S. Hu, Relativistic Effects Stabilize the Planar Wheel-like Structure of Actinides Doped Gold Clusters: An@Au7 (An = Th to Cm), J. Phys. Chem. A 124, 8173-8183 (2020).

[107] Y. Tao, W. Zou, S. Nanayakkara, E. Kraka, PyVibMS: a PyMOL plugin for visualizing vibrations in molecules and solids, J. Mol. Model. 26, 290 (2020).

[106] Y. Tao, L. Zhang, W. Zou, and E. Kraka, Equilibrium Geometries, Adiabatic Excitation Energies and Intrinsic C=C/C-H Bond Strengths of Ethylene in Lowest Singlet Excited States Described by TDDFT, Symmetry, 12, 1545 (2020).

[105] S. Hu, P. Zhang, W. Zou, and P. Zhang, New theoretical insight into high coordination number complexes in actinides-centered borane, Nanoscale, 12, 15054-15065 (2020).

[104] S. Yannacone, M. Freindorf, Y. Tao, W. Zou, and E. Kraka, Local Vibrational Mode Analysis of π–Hole Interactions between Aryl Donors and Small Molecule Acceptors, Crystals 10(7), 556 (2020).

[103] E. Kraka, W. Zou, Y. Tao, and M. Freindorf, Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA) A Review, Catalysts 10(6), 691 (2020).

[102] W. Zou, Y. Tao, D. Cremer, E. Kraka, Describing Polytopal Rearrangements of Fluxional Molecules with Curvilinear Coordinates Derived from Normal Vibrational Modes - A Conceptual Extension of Cremer-Pople Puckering Coordinates, J. Chem. Theory Comput. 16, 3162-3193 (2020).
[Supplement] Reconstructed normal modes of the XYn (n=4-9) reference system in high symmetry (Updated on Nov. 29, 2020)

[101] E. Kraka, W. Zou, and Y. Tao, Decoding Chemical Information from Vibrational Spectroscopy Data - Local Vibrational Mode Theory, WIREs Comput. Mol. Sci. 10, e1480 (2020).

[100] N. Verma, Y. Tao, W. Zou, X. Chen, X. Chen, M. Freindorf, and E. Kraka, A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory, Sensors 20, 2358 (2020).

[99] W. Zou, Y. Tao, D. Cremer, E. Kraka, Systematic description of molecular deformations with Cremer-Pople puckering and deformation coordinates utilizing analytic derivatives: applied to cycloheptane, cyclooctane, and cyclo[18]carbon, J. Chem. Phys. 152, 154107 (2020).
[Supplement] Stationary geometries of cycloheptane (C7H14), cyclooctane (C8H16), and cyclo[18]carbon (Updated on Oct. 31, 2021)

[98] Y. Tao, Y. Qiu, W. Zou, S. Nanayakkara, S. Yannacone, and E. Kraka, In Situ Assessment of Intrinsic Strength of X-I...OA Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory, Molecules, 25, 1589 (2020).

[97] W. Zou, Y. Tao, M. Freindorf, and E. Kraka, Local vibrational force constants - from the assessment of empirical force constants to the description of bonding in large systems, Chem. Phys. Lett. 748, 137337 (2020).

[96] L. C. O'Brien, J. C. Harms, J. J. O'Brien, W. Zou, Analysis of the A Ω=1 - X 3Σ0+ transition of PtS observed by intracavity laser spectroscopy with fourier transform detection (ILS-FTS), and computational studies of electronic states of PtS, J. Mol. Struct. 1211, 128024 (2020).

[95] W. Zou, G. Guo, B. Suo, and W. Liu, Analytic Energy Gradients and Hessians of Exact Two-Component Relativistic Methods: Efficient Implementation and Extensive Applications, J. Chem. Theory Comput. 16, 1541-1554 (2020).

[94] Y. Zhang, B. Suo, Z. Wang, N. Zhang, Z. Li, Y. Lei, W. Zou, J. Gao, D. Peng, Z. Pu, Y. Xiao, Q. Sun, F. Wang, Y. Ma, X. Wang, Y. Guo, and W. Liu, BDF: A relativistic electronic structure program package, J. Chem. Phys. 152, 064113 (2020).

[93] Peijun Shi, Dan Deng, Chuhuan He, Lin Ji, Yuai Duan, Tianyu Han [*], Bingbing Suo [*], Wenli Zou [*], Mechanochromic luminescent materials with aggregation-induced emission: Mechanism study and application for pressure measuring and mechanical printing, Dyes and Pigments 173, 107884 (2020).

 

2019  [top]


[92] C. Gao, S.-X. Hu [*], H. Han, G. Guo, B. Suo, and W. Zou [*], Exploring the Electronic Structure and Stability of HgF6: Exact 2-Component (X2C) Relativistic DFT and NEVPT2 Studies, Comput. Theo. Chem. 1160, 14-18 (2019).

[91] T. Yoshizawa, M. Filatov, D. Cremer, W. Zou [*], Calculation of contact densities and Mössbauer isomer shifts utilising the Dirac-exact two-component normalised elimination of the small component (2c-NESC) method, Mol. Phys. 117, 1164-1171 (2019).

[90] Ximin Liang, Qiyan Zhang, Qinfu Zhao, He Zhao, Yifan Feng, Bingbing Suo, Huixian Han, Qi Song, Yawei Li, Wenli Zou [*], and Haiyan Zhu [*], CO2 adsorption on the B12N12 nano-cage encapsulated with alkali metals: A density functional study, NANO, 14, 1950034 (2019).

[89] L.F. Tsang, Man-Chor Chan, Wenli Zou, A.S.-C. Cheung, Electronic transitions of tungsten monosulfide, J. Mol. Spectrosc. 359, 31-36 (2019).

[88] Yunwen Tao, Wenli Zou, Daniel Sethio, Niraj Verma, Yue Qui, Chuan Tian, Dieter Cremer, and Elfi Kraka, In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems, J. Chem. Theory Comput. 15, 1761-1776 (2019).

[87] Chuhuan He, Zhendong Li, Yibo Lei, Wenli Zou, and Bingbing Suo, Unraveling the Emission Mechanism of Radical-Based Organic Light-Emitting Diodes, J. Phys. Chem. Lett. 10, 574-580 (2019).

 

2018  [top]


[86] Wenli Zou, Ziyu Cai, Jiankang Wang, Kunyu Xin, An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials, J. Comput. Chem. 39, 1697-1706 (2018).

[85] Bingbing Suo  [*], Yongqin Lian, Wenli Zou [*], and Yibo Lei, The Electronic Structure of OsSi Calculated by MS-NEVPT2 with Inclusion of the Relativistic Effects, J. Phys. Chem. A, 122, 5333-5341 (2018).

[84] Qi-Yan Zhang, Qin-Fu Zhao, Xi-Min Liang, Xiao-Li Wang, Feng-Xian Ma, Bing-Bing Suo, Wen-Li Zou, Hui-Xian Han, Qi Song, Qi Wu, Ya-Wei Lie, Hai-Yan Zhu, Computational studies of electrochemical CO2 reduction on chalcogen doped Cu4 cluster, Int. J. Hydrogen Energ. 43, 9935-9942 (2018).

[83] Yunwen Tao, Chuan Tian, Niraj Verma, Wenli Zou, Chao Wang, Dieter Cremer, and Elfi Kraka, Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis, J. Chem. Theory Comput. 14, 2558-2569 (2018).

[82] Wenli Zou, Xiaolei Zhang, Humin Dai, Hong Yan, Dieter Cremer, and Elfi Kraka, Description of an unusual hydrogen bond between carborane and a phenyl group, J. Organomet. Chem. 865, 114-127 (2018).

[81] Yunwen Tao, Wenli Zou, Dieter Cremer, and Elfi Kraka, Correlating the vibrational spectra of structurally related molecules: A spectroscopic measure of similarity, J. Computat. Chem. 39, 293-306 (2018).

 

2017  [top]


[80] Yunwen Tao, Wenli Zou, Dieter Cremer, and Elfi Kraka, Characterizing Chemical Similarity With Vibrational Spectroscopy: New Insights Into the Substituent Effects in Mono-Substituted Benzenes, J. Phys. Chem. A, 121, 8086-8096 (2017).

[79] Dan Deng, Yongqin Lian, Wenli Zou [*], Permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) by the composite approach, Chemical Physics Letters, 685, 251-258 (2017).

[78] Yunwen Tao, Wenli Zou, Elfi Kraka, Strengthening of hydrogen bonding with the push-pull effect, Chemical Physics Letters, 685, 251-258 (2017).

[77] K. Shen, B. Suo, and W. Zou [*], Theoretical Study of Low-Lying Ω Electronic States of PtH and PtH+, J. Phys. Chem. A 121, 3699-3707 (2017).

[76] H. Zhu, T. Cao, Q. Zhang, X. Liang, B. Suo, W. Zou, H. Han, Y. Huang, and J. Li, All-Metal Aromatic Sandwich Binuclear Complexes: Electronic Structures, Aromaticity and Interactions with Hydrogen via Multicenter Bonds, ChemistrySelect, 2, 6206-6211 (2017).

[75] T. Yoshizawa, W. Zou, and D. Cremer, Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method, J. Chem. Phys. 146, 134109 (2017).

[74] K. F. Ng, W. Zou, W. Liu, and A. S.-C. Cheung, Electronic Transitions of Tantalum Monofluoride, J. Chem. Phys. 146, 094308 (2017).

[73] Y. Tao, W. Zou, J. Jia, W. Li, and D. Cremer, The Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water? J. Chem. Theory Comput. 13, 55-76 (2017).

 

2016  [top]


[72] T. Yoshizawa, W. Zou, and D. Cremer, Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method, J. Chem. Phys. 145, 184104 (2016)

[71] W. Zou and B. Suo, Theoretical Study of Low-Lying Electronic States of PtX (X = F, Cl, Br, and I) including Spin-Orbit Coupling, J. Phys. Chem. A, 120, 6357-6370 (2016).

[70]  X. Zhang, H.Dai, H.Yan, W. Zou, and D. Cremer, B–H···π Interaction: A New Type of Nonclassical Hydrogen Bonding, J. Am. Chem. Soc. 138, 4334-4337 (2016).

[69]  W. Zou and D. Cremer, C2 in a Box: Determining Its Intrinsic Bond Strength for the X1Σg+ Ground State, Chem.-Eur. J. 22, 4087-4099 (2016).

[68]  W. Zou, T. Sexton, E. Kraka, M. Freindorf, and D. Cremer, A New Method for Describing the Mechanism of a Chemical Reaction Based on the Unified Reaction Valley Approach, J. Chem. Theory Comput. 12 (2), 650-663 (2016).

 

2015  [top]


[67]  W. Zou, M. Filatov, and D. Cremer, Analytical energy gradient for the two-component normalized elimination of the small component method, J. Chem. Phys. 142, 214106 (2015).

[66]  A. Humason, W. Zou, and D. Cremer, 11,11-Dimethyl-1,6-methano[10]annulene - An Annulene with an Ultralong CC Bond or a Fluxional Molecule? J. Phys. Chem. A, 119, 1666-1682 (2015).

 

2014  [top]


[65]  M. K. Jahn, D. A. Dewald, M. Vallejo-López, E. J. Cocinero, A. Lesarri, W. Zou, D. Cremer, and J. Grabow, Pseudorotational Landscape of Seven-Membered Rings: The Most Stable Chair and Twist-Boat Conformers of ε-Caprolactone, Chem.-Eur. J. 20, 14084-14089 (2014).

[64]  J. C. Harms, K. A. Womack, L. C. O’Brien, and W. Zou, Analysis of New MoO Transition in the Near-IR: A Combined Theoretical and Experimental Study, J. Chem. Phys. 141, 134310 (2014).

[63]  D. Cremer, W. Zou, and M. Filatov, Dirac-exact relativistic methods: The Normalized Elimination of the Small Component Method, WIREs Comput. Mol. Sci. 4, 436-467 (2014).

[62]  Y. Liu, W. Zou, and I. B. Bersuker, Revisiting Symmetry Breaking in BNB: The Key Role of Electronic Correlation, Chem. Phys. Lett. 603, 18 (2014).

[61]  D. Burriss, W. Zou, D. Cremer, J. Walrod, and D. Atwood, Removal of Selenite from Water using a Synthetic Dithiolate - An Experimental and Quantum Chemical Investigation, Inorg. Chem. 53, 4010 (2014).

[60]  M. Filatov, W. Zou, and D. Cremer, Calculation of Response Properties with the Normalized Elimination of the Small Component Method, Int. J. Quant. Chem. 114, 993-1005 (2014).

[59]  R. Kalescky, W. Zou, E. Kraka, and D. Cremer, Quantitative Assessment of the Multiplicity of Carbon-Halogen Bonds: Carbenium and Halonium Ions with F, Cl, Br, I, J. Phys. Chem. A 118, 1948 (2014).

[58]  W. Zou and D. Cremer, Properties of Local Vibrational Modes: The Infrared Intensity, Theor. Chem. Acc. 133, 1451 (2014).

[57]  R. Kalescky, W. Zou, E. Kraka, and D. Cremer, Vibrational properties of the Isotopomers of the Water Dimer Derived from Experiment and Computations, Aust. J. Chem. 67, 426 (2014).

[56]  W. Zou and D. Cremer, Description of Bond Pseudorotation, Bond Pseudolibration, and Ring Pseudoinversion Processes caused by the Pseudo-Jahn-Teller Effect: Fluoro-Derivatives of the Cyclopropane Radical Cation, Aust. J. Chem. 67, 435 (2014).

 

2013  [top]


[55]  W. Zou, M. Filatov, and D. Cremer, Exploring Bonding in Heavy Atom Chemistry with Dirac-exact Methods, Curr. Inorg. Chem. 3, 220 (2013).

[54]  W. Zou, M. Filatov, and D. Cremer, Relativistic calculation of hyperfine parameters of mercury compounds, Curr. Inorg. Chem. 3, 284 (2013).

[53]  M. Filatov, W. Zou, and D. Cremer, Spin-orbit coupling calculations with the two-component Normalized Elimination of the Small Component method, J. Chem. Phys. 139, 014106 (2013).

[52]  W. Zou, M. Filatov, D. Atwood, and D. Cremer, Removal of Mercury from the Environment - A Quantum chemical Study with the Normalized Elimination of the Small Component (NESC) Method, Inorg. Chem. 52, 2497 (2013).

[51]  W. Zou, R. Kalescky, E. Kraka, and D. Cremer, Relating normal vibrational modes to local vibrational modes: benzene and naphthalene, J. Mol. Model. 19, 2865-2877 (2013).

[50]  W. Zou, D. Nori-Shargh, and J. E. Boggs, On the Covalent Character of Rare Gas Bonding Interactions: A New Kind of Weak Interaction, J. Phys. Chem. A 117, 207 (2013); Erratum: J. Phys. Chem. A 120, 2057-2057 (2016).

 

2012  [top]


[49]  R. Kalescky, W. Zou, E. Kraka, and D. Cremer, Local Vibrational Modes of the Water Dimer - Comparison of Theory and Experiment, Chem. Phys. Lett. 554, 243 (2012).

[48]  W. Zou, R. Kalescky, E. Kraka, and D. Cremer, Relating Normal Vibrational Modes to Local Vibrational Modes with the help of an Adiabatic Connection Scheme, J. Chem. Phys. 137, 084114 (2012).

[47]  W. Zou, M. Filatov, and D. Cremer, Bondpseudorotation, Jahn-Teller, and Pseudo-Jahn-Teller Effects in the Cyclopentadienyl Cation and its Pentahalogeno Derivatives, Int. J. Quant. Chem. 112, 3277 (2012).

[46]  E. Kraka, W. Zou, M. Freindorf, and D. Cremer, Energetics and Mechanism of the Hydrogenation of XHn for Group IV to Group VII Elements X, J. Chem. Theory Comput. 8, 4931-4943 (2012).

[45]  M. Filatov, W. Zou, and D. Cremer, On the isotope anomaly of nuclear quadrupole coupling in molecules, J. Chem. Phys. 137, 131102 (2012).

[44]  W. Zou, M. Filatov, and D. Cremer, Analytic calculation of second-order electric response properties with the Normalized Elimination of the Small Component (NESC) method, J. Chem. Phys. 137, 084108 (2012).

[43]  W. Zou, M. Filatov, and D. Cremer, Development, Implementation, and Application of an Analytic Second Derivative Formalism for the Normalized Elimination of the Small Component Method, J. Chem. Theory Comput. 8, 2617 (2012).

[42]  M. Filatov, W. Zou, and D. Cremer, Analytic Calculation of Contact Densities and Mössbauer Isomer Shifts Using the Normalized Elimination of the Small-Component Formalism, J. Chem. Theory Comput. 8, 875 (2012).

[41]  M. Filatov, W. Zou, and D. Cremer, Relativistically corrected electric field gradients calculated with the normalized elimination of the small component formalism, J. Chem. Phys. 137, 054113 (2012).

[40]  M. Filatov, W. Zou, and D. Cremer, Analytic Calculation of Isotropic Hyperfine Structure Constants Using the Normalized Elimination of the Small Component Formalism, J. Phys. Chem. A 116, 3481 (2012).

 

2011  [top]


[39]  W. Zou, M. Filatov, and D. Cremer, Development and application of the analytical energy gradient for the normalized elimination of the small component method, J. Chem. Phys. 134, 244117 (2011).

[38]  W. Zou, M. Filatov, and D. Cremer, An improved algorithm for the normalized elimination of the small-component method, Theor. Chem. Acc. 130, 633 (2011).

[37]  W. Zou, D. Izotov, and D. Cremer, New Way of Describing Static and Dynamic Deformations of the Jahn-Teller Type in Ring Molecules, J. Phys. Chem. A 115, 8731 (2011).

 

2010  [top]


[36] Y. Liu, I. B. Bersuker, W. Zou, and J. E. Boggs, Pseudo Jahn-Teller versus Renner-Teller effects in the instability of linear molecules, Chem. Phys. 376, 30 (2010).

[35]  Wenli Zou, Dong Xu, Peter Zajac, Andrew L. Cooksy, Isaac B. Bersuker, Yang Liu, and James E. Boggs, Symmetry breaking in linear ZnCl2+: a theoretical study, J. Mol. Struct. 978, 263 (2010).

[34]  W. Zou, Y. Liu, and J. E. Boggs, Relativistic ab initio study on PtF and HePtF, Dalton Trans. 39, 2023 (2010).

[33]  Y. Zhang, W. Xu, Q. Sun, W. Zou, and W. Liu, Excited States of OsO4: A Comprehensive Time-Dependent Relativistic Density Functional Theory Study, J. Comput. Chem. 31, 532 (2010).

[32]  Wenli Zou, Yang Liu, Ting Wang, Wenjian Liu, and James E. Boggs, He@Mo6Cl8F6: a stable complex of helium, J. Phys. Chem. A 114, 646 (2010).

 

2009  [top]


[31]  Wenli Zou, Yang Liu, and James E. Boggs, Theoretical study of RgMF (Rg = He, Ne; M = Cu, Ag, Au): Bonded structures of helium, Chem. Phys. Lett. 482, 207 (2009).

[30]  Yang Liu, Isaac B. Bersuker, Wenli Zou, and James E. Boggs, Combined Jahn-Teller and Pseudo-Jahn-Teller Effect in the CO3 Molecule: A Seven-State Six-Mode Problem, J. Chem. Theory Comput. 5, 2679 (2009).

[29]  Yang Liu, Wenli Zou, Isaac B. Bersuker, and James E. Boggs, Symmetry breaking in the ground state of BNB: a high level multireference study, J. Chem. Phys. 130, 184305 (2009).

[28]  Wenli Zou and James E. Boggs, Theoretical study of the electronic states of CuCl2, J. Chem. Phys. 130, 154313 (2009).

[27]  Wenli Zou and Wenjian Liu, Comprehensive ab initio calculation and simulation on the low-lying electronic states of TlX (X = F, Cl, Br, I, and At), J. Comput. Chem. 30, 524 (2009).

[26]  Wenhua Xu, Jianyi Ma, Daoling Peng, Wenli Zou, Wenjian Liu, and Volker Staemmler, Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study, Chem. Phys. 356, 219 (2009).

 

2008  [top]


[25]  Wenli Zou, Isaac B. Bersuker, and James E. Boggs, Do non-centro-symmetric linear X-Y-X molecules exist? The case for the (I)2Πu state of CuCl2, J. Chem. Phys. 129 114107 (2008).

[24]  Wenli Zou and James E. Boggs, Theoretical study on low-lying electronic states of NiH2, J. Phys. Chem. A 112, 4100 (2008).

 

2007  [top]


[23]  Wenli Zou and Wenjian Liu, Theoretical study on the low-lying electronic states of NiH and NiAt, J. Comput. Chem. 28, 2286 (2007).

 

2006  [top]


[22]  Wenli Zou and Wenjian Liu, Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI, J. Chem. Phys. 124, 154312 (2006).

 

2005  [top]


[21]  Jun Gao, Wenli Zou, Wenjian Liu, Yunlong Xiao, Daoling Peng, Bo Song, and Chengbu Liu, Time-dependent Four-component Relativistic Density Functional Theory for Excitation Energies. II. The Exchange-correlation Kernel, J. Chem. Phys. 123, 054102 (2005).

[20]  Daoling Peng, Wenli Zou, and Wenjian Liu, Time-dependent Quasirelativistic Density Functional Theory Based on the Zeroth-order Regular Approximation, J. Chem. Phys. 123, 144101 (2005)

[19]  Wenli Zou and Wenjian Liu, Extensive Theoretical Studies on the Low-Lying Electronic States of Indium Monochloride Cation, InCl+, J. Comput. Chem. 26, 106 (2005).

 

2004  [top]


[18]  Xinzheng Yang, Meirong Lin, Wenli Zou, and Baozheng Zhang, Spectroscopic constants of gallium monohalides: a DFT study, THEOCHEM 668, 209 (2004).

 

2003  [top]


[17]  Wenli Zou, Meirong Lin, Xinzheng Yang, and Baozheng Zhang, Ab initio calculations on the ground and low-lying excited states of InCl, J. Chem. Phys. 119, 3721 (2003).

[16]  Wenli Zou, Meirong Lin, Xinzheng Yang, and Baozheng Zhang, Ab initio calculations on the ground and low-lying excited states of InH, Phys. Chem. Chem. Phys. 5, 1106 (2003).

[15]  Wenli Zou, Meirong Lin, Xinzheng Yang, and Baozheng Zhang, Ab initio calculations on the ground and low-lying excited states of InI, Mol. Phys. 101, 2963 (2003).

[14]  Wenli Zou, Meirong Lin, Xinzheng Yang, and Baozheng Zhang, Time-dependent DFT study on the electronic states of BBr, Chem. Phys. Lett. 369, 214 (2003).

[13]  Xinzheng Yang, Meirong Lin, Wenli Zou, Yunjing Li, and Baozheng Zhang, Experimental and theoretical study on the electronic states and spectra of InBr, Phys. Chem. Chem. Phys. 5, 4786 (2003).

[12]  Xinzheng Yang, Meirong Lin, Wenli Zou, and Baozheng Zhang, An ab initio study of the ground and valence excited states of GaCl, J. Phys. B: Atom. Mol. Opt. Phys. 36, 4651 (2003).

[11]  Xinzheng Yang, Meirong Lin, Wenli Zou, and Baozheng Zhang, Time-dependent density functional theory study of the electronic states of BI, J. Phys. B: Atom. Mol. Opt. Phys. 36, 2283 (2003).

[10]  Xinzheng Yang, Meirong Lin, Wenli Zou, and Baozheng Zhang, Ab initio study on the ground and low-lying excited states of GaH, Chem. Phys. Lett. 372, 355 (2003).

 

2002  [top]


[9]  Xinzheng Yang, Meirong Lin, Wenli Zou, and Baozheng Zhang, DFT study on the ground and the first excited states of gallium monohalides, Chem. Phys. Lett. 362, 190 (2002).

[8]  Wenli Zou, Meirong Lin, Xinzheng Yang, and Baozheng Zhang, Theoretical study of C1Π–X1Σ+ transition of InCl, Chem. Phys. Lett. 356, 523 (2002).

 

Before 2001  [top]


[7]  Yunjing Li, Meirong Lin, Wenli Zou, Baozheng Zhang, and Wenju Chen, Lifetime measurements of the C1Π1 and B3Π1 electronic states of InCl by laser induced fluorescence, Mol. Phys. 98, 1365 (2000).

[6]  李云静,林美荣,邹文利,张包铮,陈文驹,InBr分子光谱研究,量子电子学报,17445-445(2000).

[5]  李云静,林美荣,邹文利,张包铮,陈文驹,InCl分子C1Π1态光谱研究,光学学报,201580-1584(2000).

[4]  李云静,林美荣,邹文利,张包铮,陈文驹,InCl分子B3Π1态时间分辨谱研究,量子电子学报,17289-292(2000).

[3]  李云静,林美荣,邹文利,张包铮,赵青春,陈文驹,InCl分子A3Π0态时间分辨谱研究,光学学报,20902-907(2000).

[2]  Yunjing Li, MeiRong Lin, Wenli Zou, Baozheng Zhang, and Wenju Chen, Dynamics of the A3Π0 , B3Π1 , and C1Π1 states of InCl by laser-induced fluorescence, Proc. SPIE, 3899, 489 (1999).

[1]  Yunjing Li, Meirong Lin, Baozheng Zhang, Qingchun Zhao, Wenli Zou, and Wenju Chen, Lifetime measurement of the A3Π0 electronic state of InCl by laser induced fluorescence, Mol. Phys. 97, 607 (1999).